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Executive Summary 

 

This report provides a concise overview of the significant advancements in Large 
Language Models (LLMs) concerning representation learning and personalization 
from 2023 to 2025. It highlights the rapid expansion of LLM research, marked by an 
exponential increase in publications and a notable shift in institutional leadership from 
industry to academia. The analysis delves into critical improvements in representation 
learning, including the evolution from large to smaller, more efficient models, 
data-centric approaches for enhancing representation quality, and sophisticated 
memory mechanisms that enable dynamic and long-term understanding. 
Furthermore, the report explores the imperative for personalization, detailing a 
comprehensive taxonomy of techniques spanning input-level prompting, model-level 
adaptation (including collaborative Parameter-Efficient Fine-Tuning), and 
objective-level alignment through representation editing. Practical applications across 
conversational AI, recommendation systems, e-commerce, and education are 
examined, showcasing how personalized LLMs are enhancing user experience and 
domain-specific utility. The report concludes by outlining persistent technical 
challenges such as efficiency, data sparsity, and complex data integration, alongside 
crucial ethical considerations related to privacy, bias, and trustworthiness. It projects 
a future where LLMs are not only powerful but also deeply personal, adaptive, and 
responsibly integrated into human lives through continuous lifelong learning. 

 

1. Introduction: The Evolving Landscape of Large Language Models 

 

 



1.1 The Transformative Impact of LLMs 

 

Large Language Models (LLMs) have ushered in a new era of artificial intelligence, 
demonstrating remarkable capabilities across a broad spectrum of natural language 
processing (NLP) tasks. These include sophisticated open-domain dialogue, precise 
question answering, advanced content generation, and efficient task assistance.1 
Their proficiency in generating, comprehending, and adapting to human language has 
propelled significant advancements in artificial general intelligence (AGI), 
fundamentally reshaping human-computer interactions and professional workflows.3 

The rapid development and deployment of LLMs, such as GPT-4, Mixtral 8x22B, 
PaLM-340B, and LLaMA-405B, have led to their pervasive presence in daily life. By 
March 2024, for instance, ChatGPT alone had garnered approximately 180 million 
users.1 This widespread adoption has coincided with an exponential surge in research 
activities, fundamentally altering research priorities across diverse computer science 
conferences and fields.3 The sheer volume of new studies indicates a rapid maturation 
and mainstreaming of LLM research, transforming it from a specialized area into a 
foundational pillar across various computer science subfields. This implies a 
fundamental shift where LLMs are increasingly viewed as core enablers rather than 
mere applications, leading to accelerated innovation but also to challenges in 
maintaining research quality and reproducibility amidst the high volume of 
publications. 

 

1.2 Defining Representation Learning and Personalization in the LLM Era 

 

At the core of LLM capabilities lies representation learning. This refers to the 
intricate process by which LLMs internally process, encode, and understand 
information. It involves the acquisition of general language representations during an 
extensive pre-training phase, followed by the transfer of this learned knowledge to 
enhance performance on specific NLP tasks through fine-tuning.1 The effectiveness 
and efficiency of these learned representations are paramount to the overall 
performance of any LLM system.7 

Complementing representation learning is personalization, a critical advancement 
that tailors LLM outputs and behaviors to individual user preferences, historical 
interactions, and specific contexts.8 While LLMs excel at general knowledge tasks, 



they often encounter limitations in user-specific personalization, struggling to fully 
grasp individual emotions, writing styles, and unique preferences.11 Personalized LLMs 
(PLLMs) directly address these challenges by leveraging granular user data, including 
profiles, historical dialogues, content, and interactions, to deliver responses that are 
contextually relevant and uniquely tailored to each user. This capability significantly 
enhances user satisfaction and broadens the applicability of LLMs across various 
domains.11 

 

1.3 Report Scope: Navigating Recent Research (2023-2025) 

 

This report synthesizes cutting-edge research from leading academic conferences 
and pre-print archives, including ACL, EMNLP, NeurIPS, ICML, ICLR, ArXiv, SIGIR, AAAI, 
and KDD.15 The focus is on publications from 2023 to 2025, providing a comprehensive 
overview of the synergistic advancements in LLM representation learning and 
personalization during this pivotal period. 

 

2. Macro Trends in LLM Research (2023-2025) 

 

 

2.1 Exponential Growth and Shifting Research Priorities 

 

The landscape of LLM research has undergone a dramatic transformation, 
characterized by an exponential increase in publications. In 2019, only 503 
LLM-related papers were recorded, signifying the nascent stage of this research area. 
This number doubled by 2020 and continued to climb in 2021. The most substantial 
surge occurred in 2024, with 7,109 LLM-related papers published, marking an increase 
of 3,255 papers compared to 2023.3 This dramatic growth underscores the central and 
rapidly advancing role of LLMs in computer science research. The sheer volume of 
publications indicates that LLM research has moved from a specialized sub-discipline 
to a foundational area influencing a wide array of computer science fields, including 
AI, systems, and various interdisciplinary domains.3 This profound shift in research 
priorities suggests that LLMs are now considered fundamental enablers across the 



computing landscape. 

Furthermore, LLM research is actively driving significant topic shifts within major 
conferences. Natural Language Processing (NLP) conferences, such as ACL, EMNLP, 
and NAACL, consistently prioritize research on LLM adaptation, evaluation, and core 
development, with a particular emphasis on embedding techniques.3 Concurrently, 
machine learning conferences, including ICLR, ICML, and NeurIPS, focus heavily on 
architectural and efficiency improvements for LLMs. This includes techniques like 
compression, sparsity, quantization, and Parameter-Efficient Fine-Tuning (PEFT).3 This 
division of labor creates a complementary research ecosystem where NLP 
researchers refine how LLMs understand and represent language, which is crucial for 
task performance, while ML researchers optimize the underlying models and their 
efficiency, vital for scalability and practical deployment. This complementary 
specialization fosters a holistic advancement of LLMs, ensuring that both theoretical 
foundations (representation quality) and practical considerations (efficiency, 
scalability) are rigorously addressed. Future breakthroughs may well emerge from the 
intersection of these two areas, such as developing more efficient methods for 
learning richer, task-specific representations. 

 

2.2 Global Contributions: Institutions and Nations Driving Innovation 

 

The leadership in LLM research has seen a notable evolution, with a discernible shift 
from industry giants to academic powerhouses. From 2019 through the early 2020s, 
major technology companies like Google, Microsoft, Meta, and Amazon predominantly 
led LLM research publications. Google, for instance, consistently held a top-tier 
position from 2019 to 2023, driven by its extensive computational resources, 
proprietary data, and substantial investments in LLM development.3 However, by 2024, 
academic institutions such as Tsinghua University (THU), Nanyang Technological 
University (NTU), Stanford, the University of Washington (UW), and the Hong Kong 
University of Science and Technology (HKUST) have steadily gained prominence, 
challenging and even surpassing their industry counterparts.3 This increased 
academic leadership suggests a democratization of LLM development, likely 
facilitated by the growing availability and maturity of open-source LLMs like LLaMA, 
BERT, Gemma, and Phi.1 The reduced prohibitive computational and data costs 
associated with these open-source models enable academic researchers with limited 
resources to engage in cutting-edge LLM research, fostering a more diverse and 
collaborative research environment. This trend can lead to more varied research 



directions, faster innovation cycles, and potentially more accessible and ethically 
sound LLM technologies. It also implies that the "black box" nature of LLMs 12 may be 
more rigorously addressed through academic scrutiny and open-source 
contributions, leading to more transparent and trustworthy AI systems, and a shift in 
focus from merely scaling up models to optimizing smaller, more efficient models for 
specific applications.1 

The global landscape of LLM research is dominated by the United States and China, 
which consistently hold the first and second positions in research output, respectively, 
reflecting their sustained global influence. The United Kingdom consistently ranks 
third, while Hong Kong has shown significant advancement, rising to fourth position 
by 2024. Other notable contributors include South Korea, Singapore, Germany, India, 
and Canada, maintaining stable positions within the top ten.3 While these leading 
nations share core LLM research priorities such as efficient LLM adaptation, LLM 
reasoning, and mitigating hallucinations, they also exhibit distinct thematic 
specializations. For instance, the United States emphasizes LLM application, 
prompting, and "LLM for Embedding." China focuses on vision-language models, and 
the United Kingdom prioritizes "LLM for Embedding" most highly.3 These 
specializations are hypothesized to stem from unique national interests in specific 
application domains, such as robotics in the US, multimodal systems in China, and 
neural machine translation and medical applications in the UK. 

The following tables provide a summary of the top contributing institutions and 
leading nations, highlighting the evolving landscape of LLM research. 

Table 1: Prominent Contributing Institutions to LLM Research (2024) 

 
Institution Type Leading Entities (2024) Key Research Focus (as 

observed) 

Academic Tsinghua University (THU) General LLM research 
leadership 

 Nanyang Technological 
University (NTU) 

General LLM research 
leadership 

 Stanford University General LLM research 
leadership, Socially Aware 
NLP, Human-AI Interaction 19 



 University of Washington (UW) General LLM research 
leadership 

 Hong Kong University of 
Science and Technology 
(HKUST) 

General LLM research 
leadership 

 Zhejiang University (ZJU) General LLM research 
leadership 

 University of 
Wisconsin-Madison 

Data-driven systems, 
foundation models, 
automated ML, data-centric 
AI, representation tradeoffs, 
personalization via 
representation editing 21 

 Oxford Internet Institute (OII) Responsible personalization, 
human feedback, aligning 
LLMs to individuals 23 

 UMass Amherst (CIIR) Neural Information Retrieval, 
Conversational Search, 
Retrieval-Enhanced Machine 
Learning 24 

 The Chinese University of 
Hong Kong 

Memory in AI, dialogue 
systems, multilingual 
confidence estimation 26 

 University of Edinburgh Memory in AI, dialogue 
systems 26 

Industry Google Early dominance, continued 
significant contributions 3 

 Microsoft Early dominance, continued 
significant contributions 3 

 Meta Early dominance, continued 
significant contributions 3 

 Amazon Early dominance, continued 
significant contributions 3 



 Adobe Research Graph representation 
learning, multilingual 
embeddings, long document 
understanding, 
personalization via 
heterogeneous feedback 27 

 Apple Machine Learning 
Research 

LLM personalization, 
remembering user 
conversations, 
parameter-efficient settings 29 

 Snorkel AI Data-first approach to AI, 
foundation models, enterprise 
alignment, efficient LLM 
training 22 

Table 2: Leading Nations in LLM Research and Thematic Specializations 

 
Nation Overall Output Rank 

(Consistent) 
Key Thematic Specializations 
(Examples) 

United States 1st LLM application, prompting, 
LLM for embedding 
(representation learning), 
robotics 3 

China 2nd Vision-language models, 
multimodal systems 3 

United Kingdom 3rd High prioritization of "LLM for 
Embedding" (representation 
learning), neural machine 
translation, medical 
applications 3 

Hong Kong 4th (by 2024) General LLM research 
leadership 3 

South Korea Stable Top 10 General LLM research 
contributions 3 

Singapore Stable Top 10 General LLM research 



contributions 3 

Germany Stable Top 10 General LLM research 
contributions 3 

India Stable Top 10 General LLM research 
contributions 3 

Canada Stable Top 10 General LLM research 
contributions 3 

 

3. Advancements in Representation Learning for LLMs 

 

 

3.1 Foundational Paradigms: Pre-training and Fine-tuning 

 

The bedrock of modern LLM capabilities remains the "pre-train and fine-tune" 
paradigm. This approach involves a two-stage process: first, learning broad, general 
language representations through extensive pre-training on vast and diverse datasets; 
and second, transferring this acquired knowledge to enhance performance on 
specific NLP tasks through targeted fine-tuning.1 This methodology has consistently 
yielded exceptional performance across a wide array of tasks, including sophisticated 
language generation, nuanced language understanding, and highly specialized 
domain-specific applications in fields such as coding, medicine, and law.1 LLMs are 
increasingly recognized as versatile, general-purpose learners due to their inherent 
flexibility to adapt to new tasks, often requiring only a fraction of the training data that 
was historically necessary for comparable performance.6 

 

3.2 Enhancing Efficiency: From Large to Small Language Models 

 

The escalating computational costs and significant energy consumption associated 
with scaling up LLM sizes, exemplified by models like GPT-4 and LLaMA-405B, have 
spurred a critical shift in research focus towards smaller language models (SLMs).1 



This transition is driven by the recognition that SLMs, such as Phi-3.8B and 
Gemma-2B, can achieve performance comparable to their larger counterparts while 
operating with substantially fewer parameters.1 This growing emphasis on SLMs and 
efficiency techniques represents a crucial evolution in LLM representation learning, 
moving beyond sheer scale to prioritize practical deployability and resource 
optimization. The drive for efficiency directly addresses the substantial computational 
resources required for both training and inference, which often render very large 
models impractical for academic researchers and businesses with limited resources.1 
This shift makes LLMs more accessible for real-time applications, edge devices, and 
broader adoption beyond the confines of large technology corporations, indicating 
that the utility of LLMs is now as important as their raw scale. 

Research indicates that smaller models, particularly BERT-base, maintain high 
popularity in practical settings, suggesting that their utility is often underestimated.1 
While LLMs are celebrated for their broad generalizability, studies show that 
fine-tuning SLMs on domain-specific datasets can, in certain cases, surpass the 
performance of general LLMs for highly specialized tasks.1 This highlights the value of 
targeted efficiency. 

To further enhance efficiency, machine learning conferences are dedicating 
significant attention to architectural improvements of LLMs. A major emphasis is 
placed on optimizing Transformer architectures and LLM efficiency through various 
techniques, including compression, sparsity, quantization, and Parameter-Efficient 
Fine-Tuning (PEFT).5 PEFT methods, such as LoRA, are particularly crucial for efficient 
personalization, as they enable the adaptation of model parameters without the need 
for extensive retraining of the entire model.9 Recent work in this area includes 
explorations into low-bit quantization for LLM compression (featured at ICML 2024 
and NeurIPS 2023), memory-efficient fine-tuning via sub-4-bit integer quantization 
(NeurIPS 2023), and activation-aware weight quantization (recognized with a Best 
Paper award at MLSys 2024).32 This trend opens new research avenues in optimizing 
model architectures for smaller footprints, developing novel PEFT methods (e.g., 
Per-Pcs for collaborative PEFT 9), and exploring hybrid approaches where LLMs can 
collaborate with SLMs to strike a balance between power and efficiency.1 It also 
suggests a future where personalized LLMs can be deployed more widely, even on 
resource-constrained devices, by leveraging these efficiency gains. 

 

3.3 Data-Centric Approaches to Representation Quality 



 

The sophisticated reasoning capabilities observed in LLMs are largely attributed to 
their pre-training on extensive and diverse datasets, such as C4 and Pile, typically 
sourced from web scrapes, books, and scientific literature.1 However, recent research 
is challenging the notion that sheer data quantity is the sole determinant of 
performance. A growing body of work supports the idea that "less is more," 
advocating for advanced data selection or pruning techniques. These methods aim to 
curate high-quality subsets from large datasets, thereby enhancing model 
performance and the quality of learned representations.1 This indicates a strategic 
shift towards prioritizing data quality over mere volume in the pursuit of superior 
representations. 

Beyond curation, LLMs themselves are being leveraged to generate synthetic data for 
machine learning tasks, extending beyond traditional language processing. This 
innovative application enables the creation of higher-quality datasets that more 
accurately reflect the true complexity of target tasks and distributions.6 This ability to 
self-generate and refine training data holds significant promise for continually 
improving the robustness and specificity of LLM representations. 

 

3.4 Memory Mechanisms and Dynamic Representations 

 

Memory is a fundamental component of advanced AI systems, serving as the 
underpinning for LLM-based agents and enabling them to sustain coherent and 
long-term interactions.2 While earlier surveys on LLM memory often focused on 
applications, recent work emphasizes the atomic operations that govern memory 
dynamics.33 The explicit categorization and operationalization of memory mechanisms 
in LLMs, particularly the distinction between parametric and contextual memory, is 
crucial for developing robust and dynamically adaptive personalized LLMs. 

Memory representations are broadly categorized into two main forms: 

●​ Parametric Memory: This refers to the knowledge implicitly stored within a 
model's internal parameters. Acquired during pre-training or subsequent 
post-training, this memory is embedded in the model's weights and accessed 
through feedforward computation during inference.34 

●​ Contextual Memory: This encompasses explicit external information, which can 
be either structured (e.g., knowledge graphs, relational tables, ontologies) or 



unstructured (e.g., multi-turn dialogue history, observations from external 
environments). Contextual memory is modality-general, capable of storing and 
retrieving information across heterogeneous inputs such as text, images, audio, 
and video.34 

Accompanying these memory types are six fundamental memory operations: 

●​ Consolidation: The process of integrating new knowledge into persistent 
memories.33 

●​ Updating: Modifying existing memory in response to new data or evolving 
information.33 

●​ Indexing: Efficiently organizing memory content to facilitate rapid and accurate 
retrieval.33 

●​ Forgetting: The deliberate or implicit process of discarding or de-emphasizing 
old, irrelevant, or noisy information to prevent memory overload and maintain 
efficiency.2 

●​ Retrieval: The act of accessing relevant memory content when needed for 
generating responses or making decisions.33 

●​ Compression: Reducing the size of memory while preserving essential 
information, crucial for efficient storage and reasoning, especially in 
resource-constrained environments.33 

The structured view of memory provided by this taxonomy directly addresses the 
challenge of LLMs struggling to persistently remember and incorporate user-specific 
preferences in a long-term context.2 Memory storage for LLMs is an increasingly 
active area of research, particularly for enabling personalization across extended 
conversations. LLMs are currently limited in their ability to persistently remember and 
incorporate user-specific preferences in a long-term context.2 Solutions like 
HippoRAG 2 are being developed to endow LLMs with more human-like memory 
capabilities, aiming to overcome limitations that arise when the volume of information 
grows and tasks become more complex.7 Retrieval-Augmented Generation (RAG) has 
emerged as a scalable and practical alternative for continual learning, allowing LLMs 
to retrieve relevant external information at inference time rather than requiring internal 
model modification.7 Improvements in encoder models, particularly those leveraging 
LLM backbones, significantly enhance RAG systems by generating high-quality 
embeddings that better capture semantic relationships, thereby improving retrieval 
quality for LLM generation.7 Personalized memory construction involves designing 
mechanisms for retaining and updating memory for efficient retrieval, distinguishing 
between non-parametric (token-based database) and parametric (learnable space 
projection) memory.11 Effective memory management, especially retrieval and 



updating of personalized contextual memory, is paramount for personalized LLMs. It 
enables lifelong learning, where models continually adapt to evolving user behaviors 
without catastrophic forgetting, and supports complex agents that need to retain 
information across multiple sessions.36 This understanding is foundational for building 
truly adaptive and personalized AI. 

 

3.5 Multimodal Representation Learning 

 

The capabilities of LLMs are expanding beyond text to encompass multimodal data, 
including audio, images, and video.4 This evolution is driven by research into 
multimodal multitask learning using unified transformers 37 and efforts to scale visual 
and vision-language representation learning.37 The increasing prominence of 
multimodal LLMs is reflected in the rising number of LLM-related papers presented at 
computer vision conferences such as CVPR and ECCV in 2024.3 

The expansion of LLMs into multimodal representation learning signifies a profound 
move towards more human-like, comprehensive understanding. Human interaction is 
inherently multimodal, and by integrating text, audio, and visual data, LLMs can form 
richer, more complete representations of the world and user intent. This transcends 
purely linguistic understanding, allowing for the incorporation of contextual cues from 
other modalities, leading to more nuanced and accurate interpretations of user input 
and preferences. For personalization, this means the ability to tailor responses not just 
to textual style but also to visual cues (e.g., inferring user fashion preferences from 
images) or auditory patterns (e.g., recognizing tone of voice). This holistic 
understanding directly enhances personalization by enabling LLMs to build a more 
comprehensive "profile" of a user based on all their interactions. This also opens up 
new applications, such as personalized content generation across modalities, 
multimodal recommendation systems, and more natural, empathetic conversational 
AI.12 However, it also introduces challenges in aligning representations across diverse 
modalities and ensuring coherence in multimodal outputs. 

 

4. Personalization of Large Language Models: Techniques and Frameworks 

 



 

4.1 The Imperative for Tailored LLM Interactions 

 

The ability to personalize Large Language Models has rapidly gained importance, 
leading to a wide array of applications that aim to tailor interactions, content, and 
recommendations to individual user preferences.8 Despite their general proficiency, 
LLMs often fall short in user-specific personalization, struggling to accurately capture 
individual emotions, writing styles, and nuanced preferences.11 Personalized Large 
Language Models (PLLMs) are specifically designed to overcome these limitations by 
leveraging individual user data, such as profiles, historical dialogues, content, and 
interactions. This enables PLLMs to deliver responses that are contextually relevant 
and uniquely tailored to each user's specific needs, significantly enhancing user 
satisfaction and the overall utility of the models.11 The increasing demand for 
personalized LLM-based conversational agents is evident, with users actively seeking 
customization features to align the system with their specific usage goals and 
preferences.12 

 

4.2 A Comprehensive Taxonomy of Personalization Techniques 

 

Recent surveys have systematically unified the diverse literature on personalized 
LLMs, proposing comprehensive taxonomies that categorize personalization 
techniques, datasets, evaluation methods, and applications, as well as the granularity 
of personalization.8 One such taxonomy broadly classifies PLLM methods into three 
major technical levels 11: input-level, model-level, and objective-level personalization. 

 

4.2.1 Input-Level Personalization (Prompting-based) 

 

This category focuses on managing user-specific data externally and dynamically 
injecting it into the LLM, primarily through various forms of prompt augmentation.11 
Prompting-based personalization techniques, particularly Retrieval-Augmented 
Generation (RAG), are rapidly evolving to integrate diverse user data into LLMs, 
offering a flexible and computationally lighter alternative to full model fine-tuning for 



dynamic personalization. This approach is highly suitable for real-time applications 
and adapting to dynamic user preferences, as it bypasses the need for extensive 
model updates.38 The advancements in RAG indicate a recognition that continually 
updating model parameters for every piece of new user information is inefficient. 
Instead, leveraging external, retrievable memory allows LLMs to access user-specific 
context without altering their core parametric representations, offering a balance 
between personalization depth and computational cost. 

●​ Profile-Augmented Prompting: These methods explicitly use summarized user 
preferences and profiles, presented in natural language, to augment the LLM's 
input at the token level.11 This can be achieved using non-tuned summarizers, 
where a frozen LLM directly summarizes user profiles (e.g., Cue-CoT, PAG, 
ONCE), or tuned summarizers, which are trained to adapt to user preferences and 
style (e.g., Matryoshka, RewriterSlRl).11 

●​ Retrieval-Augmented Prompting (RAG): This approach excels at extracting the 
most relevant records from user data to enhance PLLMs, often by employing an 
additional external memory. This involves personalized memory construction, 
which designs mechanisms for retaining and updating memory for efficient 
retrieval (e.g., non-parametric memory like MemPrompt, TeachMe; or parametric 
memory like LD-Agent, MemoRAG). It also includes personalized memory retrieval 
techniques (e.g., LaMP, PEARL, ROPG, HYDRA) that select not only relevant but 
also representative personalized data.11 RAG has emerged as a scalable and 
practical alternative for continual learning, allowing LLMs to adapt to new 
knowledge by retrieving relevant external information at inference time, rather 
than modifying the LLM itself.7 Improvements in encoder models, particularly 
those leveraging LLM backbones, enhance RAG systems by generating 
high-quality embeddings that better capture semantic relationships, thereby 
improving retrieval quality for LLM generation.7 

●​ Soft-Fused Prompting: This technique differs from profile-augmented 
prompting by compressing personalized data into soft embeddings, which are 
generated by a user feature encoder. These soft embeddings can then be 
integrated into the LLM's input via an input prefix (e.g., UEM, PERSOMA, REGEN, 
PeaPOD), cross-attention mechanisms (e.g., User-LLM, RECAP), or by directly 
adjusting the output logits (e.g., GSMN).11 

This trend towards prompting-based methods points towards hybrid LLM 
architectures where a base model (parametric memory) is augmented by dynamic, 
external contextual memory (managed by RAG or similar systems). The primary 
challenge shifts from training vast models to efficiently managing and retrieving 
relevant personalized information. This also necessitates robust representation 



learning for the external memory (e.g., high-quality embeddings for retrieval 7) and 
intelligent memory operations (indexing, retrieval, compression 34) to ensure effective 
personalization without noise or excessive overhead. 

 

4.2.2 Model-Level Personalization (Adaptation-based) 

 

This level focuses on designing frameworks to efficiently fine-tune or adapt LLM 
parameters for personalization, frequently utilizing Parameter-Efficient Fine-Tuning 
(PEFT) methods like LoRA.11 The emergence of collaborative PEFT frameworks like 
Per-Pcs and advanced alignment techniques like P-RLHF signifies a crucial shift 
towards scalable, privacy-preserving, and fine-grained personalization, directly 
addressing the practical limitations of one-off fine-tuning. Traditional "one PEFT per 
user" approaches are often costly and limit communal benefits.9 

●​ One PEFT All Users: This method involves training on data from all users using a 
single, shared PEFT module. This can manifest as a single PEFT module (e.g., 
PLoRA, LM-P, UserIdentifier, Review-LLM) that injects personalized information 
via user embeddings or IDs, or as a Mixture of Experts (MoE) approach that 
maintains a set of parallel, independent LoRA weights and employs soft routing to 
aggregate meta-LoRA weights for more adaptive results (e.g., RecLoRA, iLoRA).11 

●​ One PEFT Per User: This approach equips each individual user with a specific 
PEFT module, a strategy that helps preserve data privacy. While some 
implementations involve no collaboration or coordination between adapters 
during the learning process for each user (e.g., UserAdapter, PocketLLM, OPPU), 
others incorporate collaborative efforts to address computational and storage 
intensity and facilitate knowledge sharing. Examples include PER-PCS, which 
allows sharing of PEFT parameters, and federated learning frameworks (e.g., 
Wagner et al., FDLoRA), or models like HYDRA that use a base model with distinct 
heads for each user.11 

●​ Personalized Pieces (Per-Pcs): This novel framework enables users to safely 
share and assemble personalized PEFT efficiently through collaborative efforts.9 
Per-Pcs operates by selecting sharers, breaking their PEFT into smaller "pieces," 
and training specific "gates" for each piece. These pieces are then added to a 
shared pool, from which target users can select and assemble personalized PEFT 
using their own historical data.9 This modular approach preserves privacy by 
sharing components rather than entire models or raw data, enables fine-grained 
user modeling, and significantly reduces storage and computation demands.9 



Experimental results demonstrate that Per-Pcs outperforms non-personalized 
and PEFT retrieval baselines, offering performance comparable to other methods 
with significantly lower resource use across various tasks.9 

These innovations are critical for scaling personalization to millions of users while 
effectively managing computational resources and privacy concerns. The modularity 
of Per-Pcs promotes safe sharing and wider accessibility, potentially fostering 
community-driven personalization. This also highlights the growing importance of 
ethical AI design, where privacy preservation and efficient resource use are integrated 
into the core architectural decisions for personalized LLMs. 

 

4.2.3 Objective-Level Personalization (Alignment-based) 

 

This level focuses on refining LLM behavior to align with individual users' unique 
preferences, extending beyond generic preferences.11 

●​ Personalized Alignment Data Construction: High-quality data construction is 
paramount for effective alignment. This often involves self-generated data 
derived from interactions with the LLM (e.g., PLUM simulating dynamic 
interactions, Lee et al. using system messages as meta-instructions).11 Specialized 
datasets, such as the PRISM Alignment Dataset and PersonalLLM, are developed 
to assess the comprehension of personalized preferences.11 

●​ Personalized Alignment Optimization: This is frequently modeled as a 
multi-objective reinforcement learning (MORL) problem, where personalized 
preference is treated as a user-specific combination of multiple preference 
dimensions.11 Approaches include using personalized reward models (e.g., 
MORLHF, MODPO) to guide policy LLMs during training, or ad-hoc combinations 
of multiple trained policy LLMs during the decoding phase (e.g., Personalized 
Soups, Reward Soups, MOD).11 Personalized-RLHF (P-RLHF) is an efficient 
framework that utilizes a lightweight user model to capture individual user 
preferences and jointly learns the user model and the personalized LLM from 
human feedback, without requiring separate reward models for each preference 
dimension.14 P-RLHF's ability to handle implicit user preferences from feedback 
data moves towards more intuitive and less explicit personalization. 

 



4.3 Representation Editing for Fine-Grained Personalization 

 

Representation editing has emerged as a significant technique for model alignment, 
involving the direct manipulation of a model's latent representations to improve its 
performance and align it with desired attributes.40 While this technique has been 
recognized and applied in visual generation models, its exploration for personalizing 
LLMs has been relatively limited until recently.40 

A notable contribution in this area is the work "Personalize Your LLM: Fake it then Align 
it" (NAACL Findings 2025). This research proposes a scalable and efficient 
personalization approach that leverages self-generated personal preference data and 
representation editing to enable quick and cost-effective personalization.40 The 
method specifically focuses on identifying embedding spaces that capture 
personalized versus non-personalized preferences and then performs personalization 
by directly editing these representations.40 This approach represents an emerging 
frontier for LLM personalization, offering a precise and efficient method to align 
models with user preferences by directly manipulating latent representations, moving 
beyond traditional fine-tuning. Unlike broad fine-tuning, representation editing allows 
for a more granular and potentially more efficient way to steer LLM behavior towards 
specific user preferences (e.g., style, tone, factual alignment) without retraining the 
entire model or large portions of it. This implies a deeper understanding of the LLM's 
internal "thought process" (its latent space) and the ability to surgically alter it. This 
could lead to more interpretable personalized LLMs, as researchers can directly 
observe how changes in the embedding space correlate with changes in personalized 
output. It also offers greater control over personalization, potentially mitigating issues 
like bias or unintended side effects that can arise from less targeted fine-tuning, 
which is particularly valuable for sensitive applications where precise control over LLM 
behavior is paramount. 

 

5. Practical Applications and Case Studies of Personalized LLMs 

 

 

5.1 Conversational AI and Intelligent Agents 

 



LLMs are fundamentally transforming the landscape of conversational AI and 
intelligent agents, enabling seamless and contextually relevant dialogues across 
diverse topics.12 Personalized LLM agents are demonstrating the capacity to adapt to 
individual user needs, fostering emotional bonds and encouraging sustained 
interactions.12 LLM-powered chatbots are evolving from basic conversational tools 
into sophisticated assistants capable of understanding nuanced context and 
delivering highly personalized recommendations. These advanced chatbots streamline 
customer support by accurately interpreting complex customer queries, minimizing 
the need for human intervention, and providing faster responses. They also 
proactively engage with users, for instance, by addressing abandoned carts in 
e-commerce scenarios.43 

In the healthcare sector, generative LLMs are being deployed for critical applications 
such as real-time, no-code COVID-19 severity prediction through conversational, 
question-answering interactions. These models have demonstrated strong 
performance even in low-data settings, showcasing their adaptability to dynamic 
clinical environments.44 The integration of representation learning and personalization 
in conversational AI is moving beyond basic chatbot functionalities to create 
emotionally resonant and domain-specific intelligent agents that significantly enhance 
user engagement and provide critical real-time support. The shift from generic 
responses to personalized ones, enabled by improved representation of user 
preferences and context, transforms the user experience from mere utility to a more 
engaging and even empathetic interaction. In healthcare, this means a transition from 
static diagnostic tools to dynamic, conversational AI that can adapt to individual 
patient data, providing timely and tailored risk assessments. This represents a 
significant leap from purely functional AI to emotionally and contextually intelligent AI. 
Enhanced personalization also fosters greater user trust and adoption. However, it 
also raises ethical considerations around data privacy (especially sensitive health 
data), the potential for over-reliance, and the imperative for robust mechanisms to 
ensure accuracy and prevent harmful outputs, particularly in critical applications like 
healthcare. The ability to handle "low-data settings" 44 is a key representation learning 
improvement for real-world deployment. 

 

5.2 Revolutionizing Recommendation Systems 

 

LLMs are introducing a new paradigm for recommender systems, enhancing 
personalization, semantic alignment, and interpretability without requiring extensive 



task-specific supervision.45 Their inherent capabilities enable zero- and few-shot 
reasoning, allowing these systems to operate effectively even in challenging cold-start 
and long-tail scenarios where historical data is scarce.45 LLMs are not merely auxiliary 
components in recommendation systems; they are foundational enablers for 
constructing more adaptive, semantically rich, and user-centric systems.45 

The Memory-Assisted Personalized LLM (MAP) framework exemplifies these 
advancements. MAP leverages user interactions to construct detailed history profiles, 
capturing individual preferences such as item ratings. When a recommendation is 
requested, MAP's retrieval module selectively extracts the most relevant data points 
from the user profile based on the current query. This is achieved by computing a 
similarity score between the item to be predicted and the historical items stored in the 
user's memory. For instance, for items with genre lists, similarity can be calculated by 
comparing genre intersections. A more advanced technique involves using pre-trained 
language models like BERT for text feature extraction, embedding text descriptions of 
both historical and predicted items, and computing cosine similarity between their 
feature vectors. This allows for semantic comparison, identifying similarities even if 
different terms are used in descriptions.38 Once the most relevant items are identified 
and ranked based on similarity, this processed memory is integrated into the LLM as 
part of the prompt, enabling the LLM to generate more personalized and contextually 
accurate recommendations by focusing on the user's most relevant historical 
preferences, while also reducing computational costs by limiting the input to only 
pertinent data.38 Experimental results indicate that MAP consistently outperforms 
regular LLM-based recommenders that directly integrate user history through prompt 
design, with its advantage becoming more pronounced as user history grows, making 
it highly suitable for addressing successive personalized user requests.38 

Another innovative approach is the Rec4Agentverse, which proposes a new 
recommendation paradigm built on an LLM-based agent platform. This framework 
offers personalized suggestions from specialized "Item Agents" to users via an "Agent 
Recommender." These Item Agents can gather user data through direct interactions 
or by accessing relevant records, and they can collaborate with other agents to gain 
broader insights into user preferences, leading to more flexible and tailored 
recommendations.46 Personalized LLMs are fundamentally reshaping recommendation 
systems by enabling deeper semantic understanding of user preferences and items, 
facilitating effective cold-start and long-tail recommendations, and integrating 
dynamic memory for continuous adaptation. This advancement enables 
hyper-personalized shopping experiences 43, potentially increasing conversions and 
customer retention. However, it also introduces challenges related to fairness and bias 



(LLMs may amplify biases from training data), privacy (users may inadvertently 
disclose private information, especially in multi-agent collaboration), and harmfulness 
(agents generating harmful responses or transactions).46 Addressing these requires 
careful design of prompt injection to reduce bias, user control over data access, and 
robust admission mechanisms for agents. 

 

5.3 Domain-Specific Implementations (E-commerce, Education) 

 

The successful deployment of personalized LLMs across diverse domains like 
e-commerce and education demonstrates their generalizability and the critical role of 
adaptive representation learning in tailoring AI solutions to specific industry needs. 
The ability of LLMs to excel in these domains is a testament to their underlying 
representation learning capabilities, which allow them to capture intricate patterns 
from vast general datasets and then adapt effectively to domain-specific nuances 
through fine-tuning or prompting. This adaptation creates significant value. 

●​ E-commerce: LLMs are significantly enhancing product search optimization 
within e-commerce platforms. They achieve this by grasping the semantic 
meanings in natural language queries, utilizing synonyms, spell corrections, and 
relaxation rules.43 This leads to superior handling of ambiguous or long-tail 
searches (e.g., "running shoes good for knees") and improved interpretation of 
typos, ensuring customers are connected with relevant products even when their 
queries are imprecise.43 Beyond search, LLMs are also instrumental in generating 
high-quality product descriptions and SEO-optimized content, which substantially 
increases online visibility and attracts more qualified traffic to e-commerce 
platforms.43 This translates into increased conversions through 
"hyper-personalized shopping experiences".43 

●​ Education: In the educational sector, LLMs hold immense potential to enhance 
pedagogical efficacy and are increasingly perceived as valuable tools. They serve 
as effective teaching assistants, foster creativity among learners, democratize 
access to educational technology, and adapt to specific educational contexts.47 
Personalized LLMs can provide tailored learning plans and support, directly 
addressing individual student needs, knowledge gaps, or motivational 
challenges.48 This includes capabilities such as adaptive content delivery, 
real-time feedback, and the development of intelligent tutoring systems that cater 
to diverse learning styles and paces.48 The "no-code" aspect mentioned for 
healthcare applications 44 also points to the increasing ease of deployment, 



making these powerful tools accessible to non-technical domain experts in 
education. 

 

6. Key Challenges and Future Research Directions 

 

 

6.1 Technical Hurdles: Efficiency, Data Sparsity, Overfitting, Complex Data 
Integration 

 

Despite the rapid advancements, the personalization of LLMs faces several persistent 
technical hurdles. The primary technical challenges revolve around balancing 
computational efficiency with the depth and dynamism of user representation, 
particularly in managing memory and integrating diverse, sparse, and evolving user 
data across different deployment environments. This presents a paradox: true 
personalization requires rich, dynamic, and continuously updated user 
representations, but achieving this is computationally intensive and prone to issues 
with sparse, real-world user data. The challenge is not just how to personalize, but 
how to personalize efficiently, robustly, and continuously across heterogeneous data 
types and deployment scenarios. 

●​ Efficiency: LLMs demand substantial computational resources for both training 
and inference, resulting in high costs and latency. This makes them less practical 
for real-time applications or environments with limited resources, such as edge 
devices.1 

●​ Data Sparsity & Overfitting: Fine-tuning methods are susceptible to overfitting, 
especially when working with limited or noisy user data, which can compromise 
generalization capabilities. A significant challenge lies in constructing 
high-quality, user-specific preference datasets due to inherent data sparsity.11 

●​ Complex Data Integration: Efficiently representing and integrating diverse user 
data, including profiles, historical dialogues, content, and interactions, remains a 
complex task.11 Moreover, effectively leveraging complex, multi-source user 
information, such as user relationships in graph-like structures, to fine-tune LLM 
parameters is still difficult. Most current methods primarily focus on text data, 
leaving personalized foundation models for multimodal data largely 
underexplored.11 



●​ Memory Management: Retaining excessive information can lead to noisy 
memory representations, inefficient retrieval processes, and an increased 
propensity for LLM hallucinations. Conversely, storing too little information can 
compromise performance. The issue of forgetting information is exacerbated as 
context windows continue to expand.2 Preventing catastrophic forgetting while 
ensuring the efficient updating of both long-term and short-term memory is a 
crucial ongoing challenge.7 

●​ Edge Computing: Efficiently updating models on resource-constrained devices, 
such as smartphones, and ensuring seamless synchronization between cloud and 
edge devices in real-world deployments, presents a significant technical barrier.11 

Overcoming these challenges necessitates a convergence of research in various 
areas, including representation learning (e.g., efficient embeddings for sparse data), 
memory management (e.g., selective forgetting, intelligent indexing), model 
compression (e.g., quantization for edge devices), and data curation (e.g., synthetic 
data generation for alignment). This indicates that future breakthroughs will likely 
stem from interdisciplinary approaches that integrate solutions from these seemingly 
disparate fields. 

 

6.2 Ethical Considerations: Privacy, Bias, and Trustworthiness 

 

Ethical considerations, particularly privacy, bias, and trustworthiness, are not 
secondary concerns but fundamental design constraints for personalized LLMs, 
requiring the proactive integration of responsible AI principles into representation 
learning and personalization techniques. These issues are not just post-deployment 
problems; they impact the core design of how representations are learned and how 
personalization is achieved. 

●​ Privacy: The sharing of personal data raises significant concerns regarding its 
storage, usage, and protection.11 Users may inadvertently disclose private 
information, especially during collaborative interactions with agents, where 
sensitive data might circulate among multiple entities.46 Ensuring users maintain 
control over their privacy and implementing data minimization principles are 
critical safeguards.46 This drives the development of techniques like Per-Pcs 9 that 
share "pieces" instead of raw data, or focus on on-device processing.46 

●​ Bias: LLMs have the potential to learn, perpetuate, and amplify harmful social 
biases present in their training data, which can lead to unfair or discriminatory 



outcomes.12 It is imperative to acknowledge and actively control potential 
unfairness and bias in recommended agents and the information they provide, 
possibly through carefully designed prompt injection or rigorous output checks.46 
Bias mitigation requires careful data curation 1 and representation editing 40 to 
align models with desired values. 

●​ Trustworthiness/Hallucinations: LLMs can produce content that is factually 
incorrect or contextually inappropriate, a phenomenon known as "hallucination," 
often due to limitations in training data or algorithmic flaws.12 The "black box" 
nature of many LLMs also raises concerns regarding their transparency and 
interpretability.12 Additionally, there is a risk of harmful textual responses or 
manipulated actions being executed by LLM-based agents.46 Trustworthiness 
necessitates explainable models 6 and robust evaluation. 

The pervasive nature of personalized LLMs means these ethical challenges have 
significant societal implications, affecting inclusivity, fairness, and public trust. This 
will likely lead to increased regulatory scrutiny and the development of industry 
standards for responsible AI, influencing research funding and priorities towards 
ethical considerations in representation learning and personalization. The "black box" 
nature 12 also means that interpretability of representations becomes a key research 
area. 

 

6.3 The Pursuit of Lifelong Learning and Dynamic Adaptation 

 

The ultimate goal for personalized LLMs is to achieve true lifelong learning and 
dynamic adaptation. This entails models continuously evolving their representations 
and personalization strategies in real-time based on ongoing user interactions, 
without forgetting previously acquired knowledge. The ability to acquire and integrate 
new knowledge over time while preserving past information is crucial for LLMs in 
real-world applications.7 This involves a combination of techniques, including 
continual fine-tuning, model editing, and Retrieval-Augmented Generation (RAG).7 

Ensuring adaptivity to accommodate users' diverse and evolving needs and behaviors, 
while preventing catastrophic forgetting, are central challenges for managing 
long-term user memories.2 Current LLMs, even personalized ones, are often static 
snapshots of knowledge. True lifelong learning implies a dynamic system where 
representations are not fixed but constantly refined based on new interactions and 
evolving user preferences. This moves beyond discrete fine-tuning cycles to a 



continuous learning process, which is essential for personal assistants or 
domain-specific agents that need to maintain a "running memory" of user 
interactions.2 This requires sophisticated memory management and adaptive learning 
algorithms that can integrate new information without compromising existing 
knowledge. Achieving lifelong learning would enable a more symbiotic relationship 
between humans and AI, where the AI truly "understands" and adapts to the individual 
over extended periods. This is a critical step towards highly autonomous and 
intelligent agents that can learn from experience, self-improve 36, and provide truly 
personalized, evolving support across complex, multi-session interactions. This will 
necessitate advancements in areas like meta-learning, transfer learning, and robust 
memory architectures. 

 

7. Conclusion 

 

The rapid evolution of Large Language Models has established them as a 
transformative force in artificial intelligence, with representation learning and 
personalization emerging as intertwined and critical areas for their continued 
advancement. The exponential growth in research, coupled with a notable shift in 
leadership from industry to academia, underscores the field's dynamism and 
increasing accessibility. Significant progress has been made in enhancing LLM 
efficiency through the development of smaller models and techniques like PEFT and 
quantization, addressing the substantial computational overhead of larger models. 
Concurrently, data-centric approaches are refining representation quality by 
prioritizing curated, high-quality datasets and leveraging LLMs themselves for 
synthetic data generation. 

A deeper understanding and operationalization of memory mechanisms, 
distinguishing between parametric and contextual forms and defining fundamental 
operations, are proving essential for building robust and dynamically adaptive 
personalized LLMs. The expansion into multimodal representation learning further 
promises more comprehensive, human-like understanding, profoundly impacting how 
personalization can be achieved across diverse interaction modalities. 

Personalization itself has matured into a sophisticated domain, with a comprehensive 
taxonomy of techniques ranging from flexible input-level prompting (e.g., advanced 
RAG) to efficient model-level adaptation (e.g., collaborative PEFT frameworks like 
Per-Pcs) and objective-level alignment (e.g., P-RLHF and representation editing). 



These innovations are paving the way for scalable, privacy-preserving, and 
fine-grained personalization, moving beyond the limitations of traditional fine-tuning. 

The practical impact of personalized LLMs is already evident across various sectors. In 
conversational AI, they are enabling emotionally resonant and domain-specific 
intelligent agents that enhance user engagement and provide critical real-time 
support, as seen in healthcare applications. In recommendation systems, personalized 
LLMs are revolutionizing the field by enabling deeper semantic understanding, 
facilitating effective cold-start and long-tail recommendations, and integrating 
dynamic memory for continuous adaptation. Their successful deployment in 
e-commerce and education further demonstrates their generalizability and the crucial 
role of adaptive representation learning in tailoring AI solutions to specific industry 
needs. 

However, the path forward is not without significant challenges. Technical hurdles 
persist in balancing computational efficiency with the depth and dynamism of user 
representation, particularly in managing memory and integrating diverse, sparse, and 
evolving user data across different deployment environments. Equally critical are the 
ethical considerations surrounding privacy, bias, and trustworthiness. These are not 
merely secondary concerns but fundamental design constraints that necessitate the 
proactive integration of responsible AI principles into every stage of representation 
learning and personalization. 

The future of LLMs lies in achieving true lifelong learning and dynamic adaptation, 
where models continuously evolve their representations and personalization 
strategies in real-time based on ongoing user interactions, without forgetting past 
knowledge. This pursuit promises a more symbiotic relationship between humans and 
AI, leading to highly autonomous and intelligent agents that can learn from 
experience, self-improve, and provide truly personalized, evolving support across 
complex, multi-session interactions. Continued research in these areas will ensure 
that LLMs are not just powerful tools, but also deeply personal, adaptive, and 
responsibly integrated into the fabric of human lives. 
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